Reconstructing the Subsurface Three-Dimensional Magnetic Structure of Solar Active Regions Using SDO/HMI Observations

Georgios Chintzoglou*, Jie Zhang

School of Physics, Astronomy and Computational Sciences, George Mason University, VA, USA

* gchintzo@gmu.edu
Overview

• Introduction
 - Historical Background (Observations, Models)

• **Question**: What is the 3-D subsurface structure of ARs during their emergence?

• Methodology

• Observations & Results

• Conclusions
Introduction

• A solar active region (AR) is a three-dimensional (3D) magnetic structure formed in the Convection Zone (SCZ; outer ≈220 Mm of the solar radius), whose property is fundamentally important for determining the coronal structure and solar activity when emerged.

• It is widely believed that ARs seen on the solar surface are magnetic flux tubes that are being created by the dynamo process at a depth in the SCZ (Charbonneau 2005).

• Subsequently, the flux tubes emerge through the photospheric surface giving birth to ARs or sunspots and magnetic loop systems in the corona.
• How did we get there?
Fundamental Laws of Solar Magnetism

- On the surface, there is a high order of regularity on the pattern of AR magnetic polarities, well described by Hale's and Joy's laws (Hale et al. 1919).

HALE’s LAW OF HEMISPHERIC POLARITY

JOY’S LAW OF AR TILTS
Babcock-Leighton Dynamo

Beginning of Solar Cycle: *Poloidal field*

Differential Rotation
\[\omega = 14.38' - 2.77'' \sin^2 \phi \, ^{°}/\text{day} \]

After a few solar rotations...

Diff Rotation transforms a poloidal field into **two** hemispheric *toroidal* systems; AR latitudes.

Credit: Hal Zirin’s “Astrophysics of the Sun”
Models of AR Emergence

- The models of emergence in the SCZ are:
 1. The Thin-Flux-Tube model (TFT; Spruit, 1981), and
 2. The anelastic MHD model (Gough, 1969).

- While both models work well in the lower SCZ, they might not be valid at the top layers of the SCZ (that is, 20–30 Mm below the surface).

Some Classic Papers

Zwaan, Sol Phys, 1985

Observational Inference on the Emergent structure purely from observations.

So what is the 3D magnetic structure an Active Region has close to the surface?

- Note: We can see stuff *only when they reach the surface!* Anything below the surface is technically invisible because of free-free absorption.

- Thus, the best chance we have in understanding how they look like, is during the formation (emergence) of Active Regions on the surface.

- Emergence events typically last 2-4 days.

- Peak intensity of the magnetic field polarities -after emergence stops- is between 1-3 kG

IMPORTANT QUESTION FOR CONSTRAINING SOLAR DYNAMO SIMULATIONS
Methodology

By assuming the AR emerges as
• a coherent structure (no spatial deformations), and,
• at a constant velocity,

we implement the image time‐stacking method and advanced 3D visualization techniques (PARAVIEW package);

Using high‐res and high‐cadence B LOS observations from the Helioseismic and Magnetic Imager (HMI), we are able to reconstruct a 3D datacube and infer the detailed subsurface magnetic structure of ARs.
Magnetic Observations of a complex (Quadrupolar) AR 11158

Dataset Time-Cadence: 7.5 min
Datacube size: 480 × 400 × 800 pixel³

From Chintzoglou & Zhang, 2013, Astrophys. J. Letters
Image Time-Stacking Method

From Chintzoglou & Zhang, 2013, Astrophys. J. Letters
3D Fly-by of the Reconstructed Subsurface Structure

From Chintzoglou & Zhang, 2013, Astrophys. J. Letters
3D Reconstruction of the Quadrupolar Active region

Assymetric Lambda Shape

Mega-Branch α

Mega-Branch β

From Chintzoglou & Zhang, 2013, Astrophys. J. Letters
3D Reconstruction of the Quadrupolar Active region

From Chintzoglou & Zhang, 2013, Astrophys. J. Letters
Magnetic Flux Evolution

Two phase evolution for both bipoles => vertical bifurcation

Duration of Emergence	110 hr
Total Flux-Emergence Rate | 5.99×10^{16} Mx s$^{-1}$
Total Flux Emerged | 2.40×10^{22} Mx

From Chintzoglou & Zhang, 2013, Astrophys. J. Letters
Model of Emergence for Quadrupolar ARs

Progenitor Flux-tube @ base of Convection Zone

Evolution of Emergence process With a horizontal and vertical bifurcation of the initial flux-tube

From Chintzoglou & Zhang, 2013, Astrophys. J. Letters
Conclusions

• First true implementation of the image-stacking technique to reconstruct the detailed 3D structure of an AR, using advanced visualization software and high-cadence high-resolution magnetogram data

• Early stages of emergence: the emerging magnetic structures are two non-coplanar neighboring bipoles, but a more detailed picture reveals a bifurcated structure for both bipoles, in the horizontal direction and along the height as well.

• 3D reconstruction provided good evidence that Mega-Branches could be originating from the same flux tube below the photosphere.
Conclusions

• We find that there is a dual-phase evolution for both bipoles, as suggested by both the topology in 3D and the time-flux profile of the AR, providing further evidence for a bifurcation in height.

• Observations also indicate that the two bipoles have a common origin. The two bipoles have a similar topology in 3D, similar temporal evolution in flux emergence, and most significantly, appear almost collinear at the later stage of emergence.

• It is possible that the two bipoles are the result of bifurcation of a single progenitor flux tube early in the evolution.
Thank you