Jet formation in black-hole X-ray transients and implications

Nick Kylafis
University of Crete

with Pablo Reig

Thessaloniki, 1 July 2015
Introduction

- In a **Hardness-Luminosity Diagram**, XRTs exhibit a characteristic “q”-shaped curve, sometimes called **hysteresis curve** (next slide).

- At the beginning and the end of the outburst, the spectrum is hard (**hard state**). At the peak of the outburst, the spectrum is soft (**soft state**).

- I will use GX 339-4 as the prototype.
Similar behavior for BH, NS, WD !!!

The jet line in the Hardness-Intensity Diagram (Kording et al. 2008)
Knowledge?

- Up to recently, no **physical** interpretation had been proposed for the q-shaped curve.

- The question of the **counterclockwise traversal** was not even asked by most people!

- In a recent Paper (Kylafis & Belloni 2015), we offered a **physical interpretation** for the q-shaped curve.
We have made only two assumptions:

1. During an outburst, the accretion rate as a function of time is a generic “bell-shaped curve” (next slide). This assumption is self-evident.

2. At low accretion rates the accretion flow is ADAF-like (hot, geometrically thick, optically thin). At high accretion rates the accretion disk is Shakura-Sunyaev – type (cold, geometrically thin, optically thick). This has been confirmed by MHD simulations (Ohsuga et al. 2009).
Accretion rate during outburst. It is the **only parameter** in our picture.
Interpretation

- I will now describe what the accretion flow looks like during the various stages of the outburst.
From A to B and then to C
From C to D, to E, and then to A
What creates the hard spectrum?
The jet or the ADAF?

- Equally good hard X-ray model spectra are produced by jet models and by ADAF models.

- Thus, we need to test the two models against other observational constraints.
Jet model

- Over the years, our group has developed a simple jet model that explains quantitatively:

- The spectrum (Reig et al. 2003; Giannios 2005).
Giannios (2005)

- Observations and model for XTE J 1118+480
Jet model

- The time-lags as a function of Fourier frequency (Reig et al. 2003).
Time lag vs Fourier frequency

Jet model

- The shape of the autocorrelation function (Giannios et al. 2004).
Maccarone et al. (2000)
Nowak et al. (1999)
The correlation $\Gamma - <\text{time lag}>$ for Cyg X-1 (Kylafis et al. 2012).
Γ vs. <time lag>
Jet model

- The correlation Γ – Fourier peak frequency for Cyg X-1 (Kylafis et al. 2012).
Γ vs. peak frequency
New constraints

- Very recently, Altamirano & Mendez (2015) reported extremely stringent constraints from the observations of GX 339-4.

- As the source moves from the hard state to the hard-intermediate one,
 - The phase lags increase,
 - The cutoff energy decreases,
 - The photon index Γ increases.

- The models must explain them simultaneously. Our model does.
Altamirano & Mendez (2015)

![Graph showing phase lags and cutoff energy over time.](image)
Parameters

- As the source moves from the hard to the hard-intermediate state, the jet weakens and cools.

- Thus, we varied the optical depth of the jet and the Lorentz factor \(\gamma \) of the electrons.

- Both parameters give trends similar to the ones observed.
Variation of τ
Variation of γ
Variation of τ and γ.

- Not surprisingly, we can fit all three observations quantitatively very well if we assume a linear variation of τ with γ.
Conclusions

- The jet model seems to have an edge at this point.

- The supporters of the ADAF model are smart people! I am sure that they will come up with an idea, but the quantitative explanation will be difficult.

- The same model must explain ALL the correlations!

- We will see in the future which model prevails.

THANKS
New constraints

- Very recently, Altamirano & Mendez (2015) reported extremely stringent constraints from the observations of GX 339-4.

- As the source moves from the hard state to the hard-intermediate one,
 - The phase lags increase,
 - The cutoff energy decreases
 - And Γ increases.

- The models must explain them simultaneously. Ours does.