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“Space operations should comply with a general rule of the 
National Park Service: What you take in, you must take out.”	
!

JOSEPH P. LOFTUS, JR./NASA Johnson Space Center 

ORBITING DEBRIS: 
A Space Environment Problem
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The Cataloged Space Debris (GNSS)

NORAD RESIDENT SPACE OBJECT CATALOG (www.space-track.org | ASSESSED 26 OCT 2016)

GNSS
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GALILEO CASE STUDY: 
Graveyard Disposal Strategy

• Seeking to identify long-term storage orbits, which have only 
small orbital deformations over hundreds of years 
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Graveyard Orbit

(a = 30, 150 km, e = 0.001, i = 56�)

Geometry of Lunisolar Resonances  
near Galileo
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Graveyard Orbit
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The Χαλαρά (Chalará) Disposal Strategy
Graveyard Orbit

(a = 30, 150 km, e = 0.001, i = 56�)Epoch: 12 September 2016

⌦M = 355.�28, ⌦ = 177.�64, ! = 1.�18

Epoch: 15 April 2015

⌦M = 208.�17, ⌦ = 104.�08, ! = 37.�96

• Disposal epoch can be correlated with an initial lunar node	

• Satellite’s node naturally precesses due to Earth oblateness perturbations	

• Just wait (Chalará) for the appropriate lunar-satellite nodal phasing
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• Seeking to cleverly exploit the dynamical instabilities brought 
on by resonant perturbations to deliver retired Earth-orbiting 
satellites into the regions where atmospheric drag can start 
their decay

GALILEO CASE STUDY: 
Re-entry Disposal Strategy
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Reachability Domain from Guass’s Eqns

• Cartographic stability maps must be linked to the 
appropriate disposal strategy	

- satellites can be steered into a short-lived resonance 
- passive systems deployed at the EOL to enhance SRP  

• Reachability Analysis: which orbits can be reached for a 
given fuel constraint (ΔV), starting from some initial 
operational orbit?	

- for given operational orbit and single impulsive ΔV, we 
can determine the boundary of the achievable phase space 
from Gauss’s equations 

!
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ΔV Transfer Maps for Coplanar,  
Coaxial Elliptical Orbits

• For GNSS region, structures 
do not change for small ΔI 	

- off-plane re-entry solutions 
require more fuel 

• Restrict attention to disposal 
solutions on same 2D (a,e) 
dynamical map

14
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PROTEC-1-2015 ReDSHIFT

user-defined orbit on our grid, the uesr receives the relevant information in text-fie format, as in Figure
3.7. This will be upgraded (primarily by an extension of the available data-base) also including graphic
information.

Epoch   A2M(m^2/kg)  a1(km)    e1   inc(deg) capom(deg) omega(deg) 
cond18  0.015      29601.31  0.0001  56.00     282.83     196.50 
 
 REENTRY tps 
method & {optimal DV}/{min lifetime}   ntp   id    a2(km)     e2  DV(m/sec) DT(h) 
t_life(yr) 
single burn, dom=0           optimal   283 27903  28987.87  0.0400   20.6   0.00  119.19 
single burn, dom=0           lifemin   283 28149  29514.92  0.4600  276.2   0.00   36.13 
single burn, dom=pi          optimal   258 31953  28987.87  0.0400   20.7   0.00  119.14 
single burn, dom=pi          lifemin   258 32243  29620.33  0.4400  263.9   0.00   38.13 
hohmann, dom=0               optimal    11 27229  27406.71  0.0600  147.3   6.37  113.62 
hohmann, dom=0               lifemin    11 27230  27406.71  0.0800  150.0   6.27  101.05 
hohmann, dom=pi              optimal    11 31279  27406.71  0.0600  147.3   6.37  113.73 
hohmann, dom=pi              lifemin    11 31280  27406.71  0.0800  150.0   7.04  101.05 
hohmann intersection, dom=0  optimal    62 28308  29936.56  0.0400   72.7   7.31  116.76 
hohmann intersection, dom=0  lifemin    62 28313  29936.56  0.1400  252.5   7.86   68.10 
hohmann intersection, dom=pi optimal    61 32358  29936.56  0.0400   73.1   7.32  116.75 
hohmann intersection, dom=pi lifemin    61 32363  29936.56  0.1400  252.9   7.86   68.06 
 
 GRAVEYARDS tps 
method & {optimal DV}                  ntp   id    a2(km)     e2  DV(m/sec) DT(h) 
t_life(yr) 
single burn, dom=0           optimal     0    NO SOLUTION 
single burn, dom=pi          optimal     0    NO SOLUTION 
hohmann, dom=0               optimal     7 28126  29514.92  0.0000    5.4   7.02  120.00 
hohmann, dom=pi              optimal     7 32176  29514.92  0.0000    5.4   7.02  120.00 
hohmann intersection, dom=0  optimal     0    NO SOLUTION 
hohmann intersection, dom=pi optimal     0    NO SOLUTION 

Figure 3.7: The output file of optimal disposal solutions for a Galileo nominal case.

The same procedure is followed also for GTOs, as explained above. A �V map for the Baikonur-
launched GTOs and O1 with a

1

= 0.6 aGEO and e
1

= 0.65 is shown in Figure 3.8. As one can see, the
map is mostly empty, and the number of reachable re-entry solutions is not that great. Still, at least for
Baikonur-like inclinations, it is not so difficult to find disposal options with �V = 6 m/s and lifetime
T ∼ 80 yr, or �V ∼ 40 m/s and T ∼ 1 yr.

For the ‘Kourou’ and ‘KSC’ inclination bands it makes no sense to show �V maps, as they are
almost empty of points. The number of solutions found drops from ∼ 100 for ‘Baikonur’ to ∼ 5 for
‘Kourou’. This can be seen by a simple inspection of the output file produced for a i = 5○.2 GTO (Figure
3.9), where the number of single-burn transfers found is 6 and the number of Hohmann transfers is 4.
For ’KSC’ the situation is almost the same as for ‘Kourou’, with only a few solutions found for each O1,
with �V ∼ 40 − 50 m/s and T ∼ 1 − 2 yr. The differences with the ‘Baikonur’ case can be understood
in terms of the different phase-space structure, as explained in D3.1. The i = 46○ slice is more unstable,
due to the interaction of luni-solar resonances, that are not present at low inclinations.

16

Typical Result for Galileo
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Conclusions
• Cartographic Maps: complex interactions among different dynamical 

phenomena are depicted, identifying regions where the motion is stable and 
zones where secularly unstable behavior can emerge	

• For the GNSS region, intricate escape hatches are carved by lunisolar secular 
resonances and widened by SRP (depends on orientation angles)	

• Designed maneuvers needed to reach the optimal disposal orbit for each initial 
operational orbits	

- combined reachability analysis with dynamical maps 
- Δe analysis also used for targeting appropriate graveyards  

• For re-entry trajectories, the permanence in LEO region complies with 25-year 
decay rule	

!
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Questions? 
Ερωτήσεις;

Ααρών Τζέι Ροδόκλαδος	
ajrosengren@email.arizona.edu 

aaronjay@physics.auth.gr

“In contrast to a widespread cliché, the satellite problems 
still require the research on the level more fundamental 
than just tracing the microscopic influence of yet another 
tesseral harmonic.”                              SŁAWOMIR BREITER, 2001 


