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Introduction

* Instability phase -
Jupiter and Saturn’s orbits: Lm

separated in an impulsive

manner (Jumping Jupiter!)

e two main uncertainties

— timing
— magnitude

19

W I s I I |

: T T T T T T T T
;-.z ]
i \'_ 1 1 1 1 1 1 1 -
0 05 1 1.5 2 25 3 35 4 43
T T T T T T T T
; |
1 1 1 1 1 1 1 1 ]
0 05 1 13 2 25 3 35 4 45

T [Myr]

Brasser et al. (2009)



* Instability phase -
Jupiter and Saturn’s orbits: Lm
separated in an impulsive o
manner (Jumping Jupiter!) "'z

- two main uncertainties . .. . . . .

Introduction

‘- } -’(’/-(1.-5 v
HELLENIC ASTRONOMICAL SOCIETY

II"""""’""I -~ I I I I |

19

— timing ¥
* early

e |ate (in favor of the LHB)

— magnitude

T [Myr]

Brasser et al. (2009)



* Instability phase -
Jupiter and Saturn’s orbits: Lm
separated in an impulsive o
manner (Jumping Jupiter!) "'z

- two main uncertainties . .. . . . .

— timing
— magnitude
* short jump
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* large jump (low probability)

T [Myr]

Brasser et al. (2009)



Introduction

* We must set constraints!

— Terrestrial Planets
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small jump destabilizes or overexcites terrestrial planets’

orbits (g=g:)

terrestrial planets formation processes can lower AMD
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Introduction

* We must set constraints!

— Main Belt
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for a dynamically cold disk of asteroids, a large jump is needed
(Morbidelli et al., 2010) (g=g;)

sets no constraint on timing

EARLY LATE
SHORT x x
LARGE v v




Introduction

* We must set constraints!

— Main Belt
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for a dynamically cold disk of asteroids, a large jump is needed
(Morbidelli et al., 2010) (g=g;)

sets no constraint on timing

EARLY LATE
SHORT x x
LARGE v v

...revisit Morbidelli et al. (2010) considering a post-Grand Tack
initial distribution of asteroids.
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initially dynamically hot distribution of asteroids

planetesimal induced smooth migration of giant
planets

include planetary formation processes

study the effect of secular resonance sweeping in
the inner main belt
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* Giant planet migration
— smooth migration using Malhotra (1995) recipe
with initial separation corresponding to a small jump
a(t) = ay — Aa exp(—t/T)
— add extra acceleration in SYyMBA

... v [ |GM; [|GM; ( f)
Ar = — — exp | ——
T \/ as \/

.

{

— 1=5My, t,,,=15My
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Initial conditions taken from Jacobson & Morbidelli
(2014)

— Ten sets of simulations - 5500 bodies
 asteroids: 4600 bodies with 1.6 < a < 3.5 AU and mass
m,.=3.8%10° Mg
* embryos and planetesimals: ~900 bodies with ratio 8 in
mass and one embryo of 0.8 M__ .
e giant planets: Jupiter and Saturn just beyond their mutual
2:1 MMR. a;=5.4 AU, e, = 0.04, i,=1.71° and a; = 8.7 AU,

e, = 0.07, i = 1.0°.
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Simulations

* Giant planet migration-typical evolution
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final distribution
initial distribution =

| initial and final inclination of
asteroids for all 10 sets
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i ) . final distribution
initial distribution =
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initial and final eccentricity of
asteroids for all 10 sets
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Results
Mechanism
— g=g, secular resonance 50
lands on inner main belt ¢ |
— it sweeps towards a=2AU = ol
— affects low inclination 20
asteroids
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e Comparison with real observed asteroids

— selected from AstDys catalogue all asteroids with H < 9 and
H < 10 (corresponding to diameter > 50km) with g > 1.8 AU
and a<2.5AU
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e Comparison with real observed asteroids

— 51 out of 1276 asteroids end up below g=g. (4%)
— for real asteroids it is 93.88% for H<9 and 93.42% for H<10
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 Resumed all integrations until t=200My

Results

— new value is 8.44%
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* Consider particles that had initial i<20°

— new value is 4.07%
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Concluding remarks =

considered a short jump just beyond 2:1 MMR
s=s. and g=g. sweep through the main belt

ratio of asteroids below and above g=g.is much
smaller than the observed ratio

also true after evolving the system for 200My or
considering initially asteroids with i<20°

even though a short jump is a higher probability
event, it does not reproduce the asteroid belt
under any assumption for its initial distribution







