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Solar-terrestrial coupling

lllustration by K. Endo / Y. Kamide
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Magnetic reconnection:
Transforming magnetic to kinetic energy
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Magnetic reconnection:

Transforming magnetic to kinetic energy
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NOAA storms classification



Radio blackouts

Solar radiation storms
Geospace magnhetic storms
(or Geomaghetic storms)




Radio blackouts:
X-rays from solar flares -
critical for SatCom and SatNav
Minor - Moderate - Strong-
Severe - Extreme
GOES X-ray monitor:
N1 - M5 -X1-X10 - X20
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o§ -Ray Light Curves from GOES

(Geostat y Operational Environmental Satellites)
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-Ray Light Curves from GOES
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Solar radiation storms:
SEPs - impacts on spacecraft
and humans

Minor - Moderate - Strong-
Severe - Extreme

Flux of energetic ions >10 MeV
101047107 =10+=1107



GOE

S07 Proton channels (cleaned)
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Geomagnetic storms:

Global magnetic disturbances
In geospace

Minor - Moderate - Strong-
Severe - Extreme

KD 6, /7,89
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Estimated Planetary K index (3 hour data)  Begin: 2010 4pr 03 0000 UTC
9 T T

8r~

7

4

Kp "adex

ol

N

Q
Apr 02 Apr 4 Apr 5 Aor 6
Universal Time

Updated 2010 Apr 5 20:55:02 UTC NOAA/SWPC Boulder, CO USA



Magnetospheric substorms



Magnetospheric substorms
formerly aka
Auroral substorms



Single most defining feature:

Auroral displays



THE DEVELOPMENT OF THE AURORAL SUBSTORM

S.-I. AKASOFU
Geophysical Institute, University of Alaska, College, Alaska

{Received 13 January 1964)

Abstract—A working model of simultancous auroral activity over the entire polar region is
presented in terms of the auroral substorm. The substorm has two characteristic phases, an
expansive phase and a recovery phase. Each phase is divided into three stages, and character-
istic auroral displays over the entire polar region during each stage are described in detail.
Further, all the major features seen at a single station are combined into a consistent picture
of large-scale auroral activity.
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‘ Space Weather

The Aurora
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Jupiter Aurora
NASA and J. Clarke (University of Michigan) ®« STScl-PRC00-38

Saturn Aurora HST - STI?

DRCA8-05 » QPO » and NASA




Typical substorm features

Magnetic field reconfigurations
(stretching followed by dipolarization)
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Typical substorm

Particle acceleration

and injection into

inner magnhetosphere




Magnetospheric substorms

e Duration: 1-3 hours
e Energy: 101>-10%]

® dayside reconnection =
energy loading

® nightside reconnection =
msph. reconfigurations,
energy dissipation, —
particle acceleration,
plasmoid ejection

® auroral brightening,—
field-aligned currents,
Joule heating

® Rate: several / day




Geospace magnetic storms



Geospace magnetic storms
aka
Geomagnetic storms
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Geospace magnetic storms
aka
Geomagnetic storms
aka
Magnetic storms



Single most defining feature:

Global Geomagnetic Field Depression



L Geospace Magnetic Storms
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Perturbation (nT)

Geospace Magnetic Storms
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Single most defining feature:

Global Geomagnetic Field Depression
which can be explained
through the diamagnetic effect
of a giant (ring) current flowing around the Earth



Geospace magnetic storms

Duration: 1-3 days
Energy: 10'°-10%]
Magnetosphere:
global B disturbances
intense currents (RC
particle acceleration
Auroral regions
bright auroral displays

intense ionospheric
currents (electrojets)

rapid surface B variations
Rate: 1/month




Main storm driver
Strong and prolonged (many hours)
southward directed IMF
as seen in some ICMEs
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Van Allen Belts



Van Allen Belts
aka
Radiation Belts
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h Radiation belts

Magnetic shell Inner electron Magnetic field Gyration
forL=5 belt line

Outerbe||ectron Bounce
elt motion

L values

Magnetic

field line Electron drift

Proton motion
drift motion

B values
in Gauss

Mitchell [1994]



Flux variability in the radiation belts

The radiation belts exhibit substantial variation in time:

Solar cycle:
years

Season: Months
Solar rotation:
13-27 days
Storm recovery:
days

Storm main
phase: hours
SSC: minutes

SAMPEX/Proton (19-27.4 MeV)/Electron (2-6 MeV), Sunspot No., and Dst
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i Radiation belts - Slot region

CERENKOU ALCOHOL DETECTOR

CAOI

800 1000
ORBIT 1.0E+0




Daily Minimum Dst (nT)

Polar 1.2-2.4 MeV flux, 1997
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Day of Year, 1997

Reeves, SW2007
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a. Normal plasmasphere/radiation belt b. Distorted plasmasphere/radiation belt
location under typical conditions during October/November 2003 storm

A

plasmasphere plasmasphere

outer radiation belt outer radiation belt




¥ Microbursts
(by VLF Waves)
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NOAA — Proton precipitation on NOAA
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Ring Current
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Single most defining feature:

Global Geomagnetic Field Depression
which can be explained
through the diamagnetic effect
of a giant (ring) current flowing around the Earth



The Ring Current

Image courtesy Hannu Koskinen (FMI)







THE INTERRELATIONSHIP OF MAGNETOSPHERIC
PROCESSES

VYTENIS M. VASYLIUNAS

Dept. of Physics and Center for Space Research, Massachusetts Institute of Technology,
Cambridge, Mass., U.S.A.

“One Ring to rule them all...”
J. R. R. TOLKIEN

1. Introduction

Convection of plasma in the magnetosphere is one of the major aspects of magnetos-
pheric dynamics. Attempts during the past 10 yr to understand this complicated
phenomenon have led to a sequence of theoretical models of constantly increasing
sophistication (see, for example, Axford (1969)). Most of these models have been

Vasyliunas, in Earth’s Magnetospheric Processes,
Astrophysics and Space Science Library Vol. 32, 1972



THE INTERRELATIONSHIP OF MAGNETOSPHERIC
PROCESSES

VYTENIS M. VASYLIUNAS

Dept. of Physics and Center for Space Research, Massachusetts Institute of Technology,
Cambridge, Mass., U.S.A.

“One Ring to rule them all...”
J. R. R. TOLKIEN

1. Introduction

Convection of plasma in the magnetosphere is one of the major aspects of magnetos-
pheric dynamics. Attempts during the past 10 yr to understand this complicated
phenomenon have led to a sequence of theoretical models of constantly increasing
sophistication (see, for example, Axford (1969)). Most of these models have been

Vasyliunas, in Earth’s Magnetospheric Processe
Astrophysics and Space Science Library Vol. B2, 1972
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Storm-substorm relationship



Storm = 2. Substorms,

Ring current =
Accumulative result
of a series of substorm ion injections

Sydney Chapman, Syun-Ichi Akasofu
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Substorms do however
influence / define
plasma composition
in the magnetosphere
and specifically
in the inner magnetosphere
and in the ring current
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Dynamic evolution
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Van Allen belt dynamics
and geomagnetic storms



Flux variability in the radiation belts

The radiation belts exhibit substantial variation in time:

Solar cycle:
years

Season: Months
Solar rotation:
13-27 days
Storm recovery:
days

Storm main
phase: hours
SSC: minutes

SAMPEX/Proton (19-27.4 MeV)/Electron (2-6 MeV), Sunspot No., and Dst
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__E Geospace Storms and Radiation Belts

5 —©— HEO3 |
~~~~~~~~~~~ [3—E] SAMPEX
X | TTES
3 TR
L -
= B
S 4r Z E ~~~~~~~
E T _
x o
s ST
= o CbTTRELS
ST TRy
J Y
3_
40 50 60 70 80 100 200 300

Imin Dstl (nT)

O’Brien et al., JGR2003



L-shell

Daily Minimum Dst (nT)

Geospace Storms and Radiation Belts

I
Polar 1.2-2.4 MeV flux, 1997
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Geospace Storms and Radiation Belts
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L Geospace Storms and Radiation Belts

Association of MeV
electrons with ULF
wave power increase

[Baker & Daglis, 2006]
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Geospace Storms and Radiation Belts
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_-h Geospace Storms and Radiation Belts

WPI-PAD CONTROL OF LOSS RATE
ULF/ELF/VLF waves resonate with trapped

L
particles in the magnetosphere causing pitch %%
angle scattering and precipitation. trapped
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_-h Geospace Storms and Radiation Belts
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Complex and rich relation
Reeves, SW2007



L FP7-Space MAARBLE

NOA,ONERA,BAS,IRF,IAP,UofA, UCLA
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_-h Geospace Storms and Radiation Belts
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¥ Microbursts
(by VLF Waves)
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Stanford VLF Palmer Station 2004-07-23
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Lightning-produced waves in frequencies 1-30 kHz

Due to the dependence of their dispersion relation to

frequency, high-frequency components of the pulse arrive
slightly before the low-frequency components.
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Stanford VLF Palmer Station 2003-02-27
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Van Allen B Bu (right channel)
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